Weighted Log-rank Tests and Weighted Cox Models in Non-Proportional Hazards

Ray Lin
Genentech/Roche

San Francisco Bay Area Chapter of American Statistical Association Monthly Seminar
May 21, 2018
Agenda

- Non-proportional Hazards (NPH) in time-to-event endpoints
- Impact on analyses and clinical interpretation
- Cross-Pharma Working Group
- Alternative analysis methods
 - Weighted log-rank test
 - Simulation Study #1
 - Weighted Cox model
 - Simulation Study #2
 - Example on a real study
 - Simulation Study #3
- Ongoing efforts
 - Max-Combo test
 - Alternative study design and analysis
Non-Proportional Hazards (NPH)

- NPH = hazard ratio (treatment effect) changes over time
 - Delayed treatment effect (late separation of curves)
 - Cancer immunotherapies (due to its MOA)
 - Diminishing effect (merging curves)
 - Overall survival confounded by subsequent therapies
 - Crossing survival curves
 - Detrimental during a certain period of time

Delayed Effect (OAK)

Diminishing Effect (BOLERO II)

Impact on Analysis

1. Log-rank test power is reduced by 30% for a 3-month delay (with 12-month median control)

2. Hazard ratio estimate is biased (Cox model)
 - Proportional hazards (constant hazard ratio) assumption is violated
 - Treatment effect is diluted
 - Cox model averages out the treatment effect across all time points

\[
HR = \begin{cases}
1 & \text{for } t \leq t^0 \\
0.7 & \text{for } t > t^0
\end{cases}
\]
1. Clinical interpretation and decision making
 - Hazard ratio = risk reduction
 - Potentially misleading if only reporting a constant effect over time based on the standard Cox model
 - E.g., a patient who cannot stay on treatment for a sufficient time may be unlikely to get benefits

2. Evaluation for health economics
Cross-Pharma Working Group on NPH

- **Objectives:**
 - To address the issue of NPH for design, analysis and interpretation
 - Across Oncology, ImmunoOncology
 - Focus on Phase III / regulatory trial setting

- **Workstreams**
 - Endpoint
 - Design and Simulation
 - Analysis

- **Milestone and goal:**
 - Duke Margolis workshop Feb. 5, 2018 with FDA and EMA participants
 - Manuscripts 2018
 - Guidance and White Papers 2018

- **Members**
 - AZ, BMS, Merck, B&I, Novartis, Lilly, Abbvie, Roche, Bayer, Janssen, Takeda, Amgen, Pfizer, GSK, Celgene, and FDA
1. Hypothesis testing
 – Weighted log-rank tests
 – Restricted Mean Survival Time (RMST)
 – Weighted KM tests
 – Testing difference of survival rates at specific time points

2. Treatment effect estimate
 – Hazard ratio estimate based on weighted Cox models
Weighted Log-Rank Tests

- Log-rank test
 \[Z = \frac{\sum_{j=1}^{J} (O_{1j} - \frac{O_j}{N_j} N_{1j})}{\sqrt{\sum_{j=1}^{J} V_j}} \]

- Weighted Log-rank test
 \[Z = \frac{\sum_{j=1}^{J} W_j (O_{1j} - \frac{O_j}{N_j} N_{1j})}{\sqrt{\sum_{j=1}^{J} W_j^2 V_j}} \]

- Weight functions
 - Fleming-Harrington weight:
 \[W(t) = S(t)^{\rho} (1 - S(t))^\gamma \]
 - Log-rank test (0,0)
 - Wilcoxon-Prentice (1,0)
 - Piece-wise constant weight
Simulation Study #1

Design

- **NPH patterns**
 - Delayed effect

- **Weight functions**
 - Fleming-Harrington family

- **Settings**
 - \(N = 400 \) (1:1 randomization)
 - Treatment effect HR: 0.55, 0.7
 - Control median survival: 12 or 24 mos
 - Enrollment: 12 mos with ramp-up or uniform
 - Delay pattern: delayed vs. crossing effect
 - Delay duration: 10% -- 50% of control median
 - Data maturity: event-patient ratio: 60% vs 70%
Simulation Study #1

Summary

- Type-I error is preserved
- Choice of weights in Fleming-Harrington family
 - < 10% delay → LR
 - 10% - 40% → WLR(1,1)
 - > 40% → WLR(0,1)
- Consistent results across
 - Recruitment patterns
 - Median survival
 - Data maturity
 - Treatment effect (HR)

Fleming-Harrington weight family

![Graph showing Fleming-Harrington weight family](image)
1. What is the clinical interpretation of the weights?

2. What is the corresponding treatment effect estimate?

We proposed a hazard ratio time-profile estimate based on “weighted” Cox models
Log-rank statistics is equivalent to the Score statistics in Cox model.

Cox Model
- X: treatment assignment (tx=1; ctrl=0)
- β: treatment effect (usually report $\text{exp}(\beta)$ as “hazard ratio”)
- Hazard: $h(t) = h_0(t)\text{exp}[\beta X]$, $h_0(t)$ is baseline hazard
- Survival: $S(t) = \text{exp}[-\int_0^t h(s)ds]$

HR estimated using Cox model (ie, $\text{exp}[\beta]$) corresponds to hypothesis testing using log-rank test.
“Weighted” Cox Model

For a weighted log-rank test with normalized $W(t)$, let a Cox model:

- Hazard: $h(t) = h_0(t) \exp[\beta W(t)X]$
- Score statistics is equivalent to the weighted log-rank
- Partial (%) treatment effect
 - Let $Y = W(t)X$ (a time-dependent covariate)
 - Create Y, fit the Cox model and get the coefficient estimate for Y (ie, β)
- Time-Varying HR (time-profile)
 - $HR(t) = \exp[\beta W(t)]$

Notes:
- $W(t)$ in $[0, 1]$ with maximum 1. Normalization of $W(t)$ will not change the statistics
- Lin (1991) and Sasieni (1993) incorporate weight functions into the score function; the score statistics is equivalent to ours.

Simulation Study #2

Design

- NPH patterns
 - Delayed effect
 - Diminishing effect

- Weight functions
 - Piece-wise linear and exponential tail

- Settings
 - N= 400, 720 (1:1 randomization)
 - Treatment effect HR: 0.68, 0.75
 - Varying
 - Delayed effect (or prolonged effect) duration
 - Effect % during the delayed /prolonged effect duration
 - Control median survival: 12 mos
 - Enrollment: 12 mos with ramp-up
 - Data maturity: event-patient ratio: 70%

Simulation Study #2
Summary

- Type-I error is preserved

- Power
 - The most powerful test if the weight assumption is correct
 - Still more powerful than standard log-rank tests even if mis-specified

- Hazard ratio estimate
 - Unbiased if the assumption is correct
 - Still less biased than standard Cox models even if mis-specified

Example from a Real Study
0-1 Piece-wise Constant Weight

- Piece-wise constant with 0 or 1 weight
- Clear clinical interpretation of the HR estimates
 - HR after t_0
 - Risk reduction after t_0 among the patients who survive through t_0
- Equivalent to landmark analysis
Poplar (GO28753) 2L NSCLC

Effect assumption	P value*	HR Estimate*
Always full effect (Standard Log-rank) | 0.0056 | 0.68 (0.51, 0.89)
Minimal first 3 mo; full effect after 3 mo | 0.0020 | 0.61 (0.45, 0.84)
Minimal first 8 mo; full effect after 8 mo | 0.0006 | 0.50 (0.34, 0.75)

*Unstratified analysis based on data cut Dec 1, 2015
Simulation Study #3
Design

- Scenarios
 - Delayed effect
- Weight function
 - 0-1 weights
- Settings
 - N = 400 (1:1 randomization)
 - Event-patient ratio 70%
 - Treatment effect HR: 0.68
 - Control median survival: 12 mos
 - Varying
 - Delay duration (t_0)
 - Adjustment factor (a_0)
 - Enrollment: 12 mos with ramp-up
Power and HR Estimate
Varying t_0

- **Truth**
 - $a_0 = 0$
 - $t_0 = 3$ mos

- **Model**
 - $a_0 = 0$
 - $t_0 = 0$ to 6 mos

% Effect (Truth) vs Weight (Model)
Power and HR Estimate
Varying a_0

- **Truth**
 - $a_0 = 0$ to 100%
 - $t_0 = 3$ mos

- **Model**
 - $a_0 = 0$
 - $t_0 = 3$ mos

Graphical representation showing the relationship between a_0 and the effect, as well as the weight model.
Simulation Study #3

Summary

- Type-I error is preserved

- Hazard ratio estimate
 - 0-1 weights is easier to interpret (than Fleming-Harrington weights)
 - Unbiased if the assumption is correct or mis-specified in the conservative direction
 - May biased toward null but still less biased than Cox models if mis-specified
 - Not biased away from null

- Power
 - Most powerful if weight is correctly specified
 - In general more powerful than log-rank
 - May be less powerful than log-rank if weight assumption is far off
Pre-Specification of the Weights

The weight function needs to be pre-specified in order to preserve Type-I error

- Chosen based on prior data or scientific rationales
- Need to evaluate the “loss” if mis-specified (via simulation)
 - In general more powerful than log-rank
 - May be less powerful if weight function is far off

Max-Combo test (work in progress)

- Pre-specifying several weight functions
- Report the one with the max Z score
- P value adjusted for model selection
- HR is tricky to adjust
 - Choose 0-1 weight family and report all corresponding HR estimates
Rationales:
- Based on prior studies and the MOA of the molecule, a delayed treatment effect is expected in this study.
- The duration of the delay is not clear.

Design and analysis plan:
- Propose 0-1 weight functions, assuming the delay duration is
 - Short: 0 month (log-rank)
 - Medium: 3 months
 - Long: 6 months
- Testing: use the Max-Combo test
- Estimate: report the estimates from all weight functions
 - Overall HR (Cox); HR after 3 months; HR after 6 months

Run simulations to characterize these weight functions (gain and loss if the model is correctly specified or mis-specified)
Weighted log-rank tests and Cox models may be used as alternative analysis methods under NPH

- Focus analysis on the time points where the treatment effect is less diluted
- Achieve higher power than standard log-rank test
- Enable reporting of a hazard ratio time-profile
 - Less biased hazard ratio estimate than standard Cox model
 - Potentially more informative description of clinical benefit
Acknowledgements

- Roche/Genentech
 - Larry Leon
 - Zhengrong Li
 - Ina Rhee
 - Jing Yi
 - Ru-Fang Yeh
 - Ben Lyons
 - Gracie Lieberman
 - Yumeng Li
 - Shi Li
 - Na Cui
 - CIT Endpoint Taskforce

- Non-Proportional Hazards Cross-Pharma Working Group
 - Design and simulation subteam
 - Analysis subteam